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 Abstract 

The digital trails that students leave behind on e-learning environments have attracted considerable 
attention in the past decade. Typically, some of these traces involve the production of different kinds 
of texts. While students routinely produce a bulk of texts in online learning settings, the potential of 
such linguistic features has not been systematically explored. This paper introduces a novel approach 
that involves using student-generated texts for predicting performance after viewing short video 
lectures. Forty-two undergraduates viewed six video lectures and were asked to write short 
summaries for each one. Five combinations of features that were extracted from these summaries 
were used to train eight machine learning classifiers. The findings indicated that the raw text feature 
set achieved higher average classification accuracy in two video lectures, while the combined feature 
set whose dimensionality had been reduced resulted in higher classification accuracy in two other 
video lectures. The findings also indicated that the Gradient Boost, AdaBoost and Random Forest 
classifiers achieved high average performance in half of the video lectures. The study findings suggest 
that student-produced texts are a very promising source of features for predicting student 
performance when learning from short video lectures. 

Keywords: machine learning, raw text features, engineered text features, video lectures, video 
learning analytics 

 

Introduction 

Nowadays, e-learning is ubiquitous, its adoption ranging from corporations to educational institutions. 
In the context of higher education both hybrid and fully online courses have become the norm. When 
studying online, students engage in various course activities such as lecture viewing, online readings, 
synchronous and asynchronous online discussions, quizzes, assessments, and assignment submissions 
(Ferguson, 2012; Hernández-García & Conde-González, 2016; Romero & Ventura, 2010; Tomasevic, 
Gvozdenovic & Vranes, 2020). All student activity in such E-learning systems can be logged. Hence, 
students' interactions with the course materials are reflected in their digital footprints (Ifenthaler & 
Widanapathirana, 2014; Papamitsiou & Economides, 2014; Romero & Ventura, 2010; Schumacher & 
Ifenthaler, 2018). Through their participation in e-learning environments, students generate huge 
amounts of digital data. The digital traces that the students leave have attracted the interest of 
educators, researchers, administrators, and other stakeholders.  

Over the past decade, Educational Data Mining (EDM) and Learning Analytics (LA) emerged as research 
fields that aim to capitalize on such data (Ferguson, 2012). According to Romero and Ventura (2020), 
LA can be defined as the measurement, collection, analysis, and reporting of data about learners and 
their contexts, for purposes of understanding and optimizing learning and the environments in which 
it occurs. Video Learning Analytics (VLA) is a sub-set of LA that focuses on students’ learning 
behaviours when learning from video lectures (Giannakos, Chorianopoulos & Chrisochoides, 2014; 
Hasan et al., 2020). 

The value of the data that is collected through online learning systems is widely recognized. The first 
wave of studies in the field focused on the identification of variables that could be used to predict 
student performance, increase student retention, and identify at risk students.  
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More specifically, LA studies have employed various measures such as (a) demographic data: age, date 
of birth, citizenship, prior academic history, expertise (Stöhr, Stathakarou, Mueller, Nifakos & 
McGrath, 2019; Tempelaar, Rienties, Mittelmeier & Nguyen, 2018) native language, previous 
enrolment in the same course (Gašević, Dawson, Rogers & Gasevic, 2016), (b) engagement or 
interaction data: student online forum discussions (Chen, Chang, Ouyang & Zhou, 2018), clickstreams 
(Giannakos et al., 2015; Stöhr et al., 2019), trace data recorded by LMSs e.g. course logins, resources, 
assignments, quizzes, feedback, map, lessons, and chat) (Agudo-Peregrina, Hernández-García, & 
Pascual-Miguel, 2014), and (c) performance data: final exam (Kim, Yoon, Jo & Branch, 2018), midterm 
exams (Blikstein et al., 2014), and online quizzes (Huang, Lu, Huang, Yin & Yang, 2020).  

By drawing on the aforementioned features former studies have been able to predict the final course 
performance (Agudo-Peregrina et al., 2014; Conijn, Snijders, Kleingeld, & Matzat, 2017; Tomasevic et 
al., 2020) or identify students who are about to drop out due to learning struggles (Hasan et al., 2020; 
Huang et al., 2020). Overall, the picture that emerged from utilizing such data is very promising 
indicating that student performance can be modelled using such features to meet the needs of 
instructors, students, and administrators.  

Unlike other types of features, student-produced texts have not been systematically explored as 
features for predicting student performance, either in E-learning or in micro-learning contexts. This is 
somewhat paradoxical considering that students generate a large volume of texts when interacting 
with E-learning systems. The only notable exception to this pattern is forum discussions. In fact, 
participation in forum discussions has turned out to be an important predictor of online learning 
success (Papamitsiou & Economides, 2014; Schumacher & Ifenthaler, 2018). Notwithstanding the use 
of text, most studies tend to consider behavioural and contextual features (e.g., number of words per 
forum post, time of post etc.) rather than the actual words used and their semantic meaning.  

The present study aims to address this limitation by explicitly focusing on student-produced texts. 
More specifically, we focus on a cohort of students who viewed a series of video lectures and were 
required to draft short summaries for each lecture. Using Natural Language Processing (NLP) 
techniques we extract a combination of five different sets of features and use them to train eight 
Machine Learning (ML) algorithms. Our goal is to explore the potential of text as a source of features 
for predicting student learning from video lectures.  

The paper is organized as follows. The ‘Literature review’ section outlines former studies in this field. 
The ‘Method’ section introduces five text-based feature sets: (a) raw text features, (b) engineered 
features, (c) a combination of engineered features and raw features, (d) a combination of all features 
whose dimensionality has been reduced and (e) a combination of all features with feature reduction 
applied to engineered features. The ‘Analysis’ section describes the NLP techniques for text processing 
and the ML algorithms that were utilised. The ‘Results’ section presents the performance of different 
ML classifiers as a function of the input feature sets. The ‘Discussion’ section contextualizes the paper 
findings and explores the implications and limitations of this study. Finally, the ‘Conclusion’ section 
summarizes the major key points of the paper.  

Literature Review  

Text as a source of features for modeling student performance 

As mentioned above, student-produced texts are not commonly used as features for predicting 
learning performance or modelling student learning. Still, student-generated texts have attracted 
research attention. Of particular interest in the context of online learning are texts created in fora, 
chat, Wikis, and assignments that require the submission of essays.  

Earlier research had indicated that forum discussions are correlated with learning performance (Kim, 
Park, Yoon & Jo, 2016; Papamitsiou & Economides, 2014). Hence, it was only natural that researchers 
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explored the power of forum discussions as features for predicting learning (Conijn et al., 2017; Kim 
et al., 2016; Romero & Ventura, 2010; Wang, Kraut & Levine, 2015). 

Interestingly, most studies that have examined texts as a feature either for predicting performance or 
other reasons are related to MOOCs (Robinson, Yeomans, Reich, Hulleman & Gehlbach, 2016). The 
motivation behind such studies lies in the inability of instructors to follow the online discussions that 
take place in forums and intervene as needed. The sheer volume of posts in MOOCs makes it 
practically impossible for a single instructor or even a small, dedicated course team to keep track. 
Simply put, monitoring MOOC forum discussions is a formidable task. As a rule, such large-scale 
courses call for automation. To date, some studies have explored automated tools that could help 
instructors identify which topics are unrelated to the course content (Wise, Cui, Jin & Vytasek, 2017; 
Wise, Cui & Vytasek, 2016), detect posts that reflect cognitive presence (Hayati, Chanaa, Idrissi & 
Bennani, 2019) or find posts suggesting that an urgent response is required (Almatrafi, Johri & 
Rangwala, 2018). It should be noted that the massive number of messages that is readily available in 
MOOCs provides researchers with sufficiently large text corpora that can be used for training ML 
models.  

Former studies that have utilized texts as a source of features for ML can be distinguished in two large 
categories: (a) studies adopting non-linguistic features and (b) studies utilizing linguistic features.  

With respect to the former, the literature indicates that a series of studies have systematically 
examined texts but without considering their linguistic or semantic content, i.e., no NLP techniques 
are used. More specifically, many studies that use course forum discussions as a source of features do 
not extract any linguistic features from the fora whatsoever (Romero, López, Luna & Ventura, 2013; 
Rossi & Gnawali, 2014; Wen, Yang & Rose, 2014). Studies falling into this category typically utilize 
contextual information such as the number of posts, the number of words per post or the time of 
posting.  

For example, in a study involving 114 undergraduates in a CS course, Romero et al. (2013) extracted – 
among others - the following features from the course forum: messages, threads, words, sentences, 
views, and time. Their aim was to use these features to train 14 ML algorithms to predict whether 
students would pass or fail the course. Interestingly, the number of messages and the number of 
words per message were amongst the best predictors, yielding a classification accuracy that ranged 
from 0.70 to 0.90.  

Rossi and Gnawali (2014) examined a huge corpus of messages (more than 700K posts) from 60 
Coursera MOOCs using mostly non-linguistic features. In fact, word count was the only linguistically 
motivated variable that they used. They adopted a language-independent approach for supervised 
learning that involved the classification of threads into Coursera's labelling system (6 general 
categories of threads: Study Groups, General Discussions, Lectures, Assignments, Logistics, and Course 
Material). The authors reported a classification accuracy that ranged from 0.58 to 0.91, though one 
specific category (Study Groups) was easier to classify more accurately compared to all others. 
Interestingly, the average number of words per message, namely the only NLP feature they had 
considered, was amongst the most important predictors.  

Despite the promising findings of both studies’ classification-wise, two points are worth noting. First, 
linguistic features such as the number of words turned out to carry important information. Second, 
the features extracted from the forum texts were not semantic in nature, which means that the actual 
information that the words carry is ignored, which is a major limitation of such approaches.  

With respect to the latter, a handful of studies have explicitly focused on linguistic or semantic 
features of student-produced texts of various forms. As a rule, the NLP methods used involve text 
vectorization either through Bag of Words (term frequencies) or distributed word representations 
(word embeddings). Some studies typically adopt the Bag of Words (BoW) approach (unigrams and 
bigrams) often in combination with TF-IDF (Cui & Wise, 2015; Wise et al., 2017; Wu, Hsiao & Nian, 
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2020; Yang, Wen, Howley, Kraut & Rose, 2015). Other studies have also explored Part of Speech (POS) 
tagging as features (Lin et al., 2009). With a few notable exceptions (e.g., Dessì, Fenu, Marras & 
Reforgiato Recupero, 2019; Zhang & Litman, 2018), word or sentence embeddings are hardly ever 
used. Considering the objective of this study, we review studies that use NLP in the next section.  

Extracting features from text for training ML models  

The literature search returned a handful of studies that have employed NLP techniques for analysing 
student-produced text. Robinson et al. (2016) used data from a HarvardX MOOC focusing on Education 
with more than 41K participants. In particular, they analysed student written responses to a pre-
course survey. This open-ended prompt asked students to identify why the course is useful or how 
they would apply the knowledge and skills that they expect to gain from the course. The objective was 
to use NLP to predict who completed the course or not (i.e., binary classification). Student responses 
were vectorized using e.g., BoW approach involving unigrams and bigrams. Subsequently, these 
vectors were used to train a Logistic Regression model. The classification accuracy that was obtained 
using a combination of NLP and other features was somewhat promising (0.59).  

In a study that targeted discussion forums in five different MOOC courses (3 of which were Statistics-
related), Wise et al. (2017) examined the possibility of automatic classification of posts as content-
related or unrelated (binary classification). The researchers sampled a large corpus of messages from 
the course fora and vectorized the texts using a BoW approach with unigrams and bigrams. A total of 
2.2K features that were extracted were used to train a Logistic Regression model. The study results 
indicated that the model accuracy was 0.80 and that it could generalize both to other Statistics courses 
and even to an unrelated course - though the accuracy dropped to 0.73.  

Almatrafi et al. (2018) used the Stanford MOOCPosts dataset, which involves more than 29K posts in 
three domains (Humanities, Medicine, and Education), to detect whether a MOOC forum post requires 
an urgent instructor response or not. For this binary classification task, they used three feature sets: 
LIWC (94 features), post metadata (number of reads, number of votes, first post/comment), and NLP 
(BoW with unigrams). Various combinations of these feature sets were used to train several ML 
classifiers: Naïve Bayes, Support vector machines, Random forests, AdaBoost, and Logistic regression. 
The authors report that the performance of Logistic Regression with unigrams was 0.84.  

Dessì et al. (2019) collected more than 10K video lectures from 617 Coursera courses to classify 
educational videos in seven general-level categories. The authors extracted the transcripts from the 
video lectures and then sought to classify the videos using a combination of features. More 
specifically, for this multi-class classification problem they utilized three NLP feature sets: (a) a BoW 
approach with unigrams and TF-IDF, (b) keywords and (c) concepts. It should be noted that for (b) and 
(c) the authors used IBM Watson's Natural Language Understanding API. Similarly, to the BoW TF-IDF, 
IBM Watson's Features Extraction Module converts both keywords and concepts into vectors. These 
feature sets were used to train five ML classifiers: Decision Tree, Support Vector Machine, Random 
Forest, and Support Vector Machine with Stochastic Gradient Descent. The results indicated that the 
F-measure was around 0.70 when the TF-IDF was used as a feature and SVM or SVM+SGD were used 
as algorithms.  

Rationale of the present study  

Overall, the aforementioned studies reveal the potential of student-authored texts as well as other 
texts (e.g., video transcripts or written responses to pre-course surveys) as ML features. While all 
these studies involved supervised learning in either binary or multi-class classifications, to the best of 
our knowledge no study has explicitly targeted learning performance when learning from video 
lectures. The present study aims to fill this gap by exploring NLP techniques for predicting learning 
performance in micro-learning videos.  
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The main complication of using student-generated texts for ML purposes is that text is not numerical 
data, so it cannot be directly used. Hence, text vectorization is an essential prerequisite: words need 
to be converted to numbers, which could then be used as features for training ML models. In the next 
sub-section, we introduce the essential NLP terminology that will be used throughout this paper.  

Converting Text to Vectors for ML  

Document: In NLP a document is a sequence of words, ranging from a few words in a sentence, a 
paragraph and even to longer text chunks such as a whole article. It should be noted that typically 
each word in a document is a feature on its own.  

Document Term Matrix (DTM): In NLP the DTM is commonly used to represent text in a numeric 
structured form. In such a matrix, the rows represent the documents while the columns represent the 
individual words. The elements of such a matrix are binary numbers (one-hot encoding), word 
frequencies (BoW) or weighted word frequencies (TF-IDF). The length of the matrix (i.e., columns) is 
determined by the vocabulary over all documents.  

One-hot encoding: In this case the words contained in a document are represented as binary 
numbers. Hence, if a word is present in the document the value in the corresponding column in the 
DTM is 1, if not it is 0. It should be noted that only the presence of a word in a document is considered, 
i.e., its frequency is ignored.  

BoW: In this case texts are represented as fixed-length feature vectors. Unlike the one-hot encoding 
approach, the corresponding value in the DTM column represents the frequency of a given word. The 
frequency of words reflects their importance: words with higher frequency of occurrence are given 
more importance relative to other words.  

TF-IDF: While the TF-IDF approach also uses word frequencies, these are weighted, which addresses 
the fact that some words appear more frequently than others. In this case, higher weights are given 
to words that are particular to a specific document, namely have less frequency over all documents. 
Each column in the DTM contains a value that corresponds to the weighted frequency of the word.  

Word embeddings: There are three main limitations associated with the representation of words in 
frequency-based approaches such as BoW and TF-IDF. First, a large vocabulary will entail that the total 
number of dimensions will be high, which will result in a very sparse matrix where most elements will 
be zero. Second, the computation of similarity between two documents presupposes the occurrence 
of common words. If there are no common words in the documents, then the resulting cosine 
similarity will be zero even if the two documents have identical meanings. Last, the BoW and TF-IDF 
only consider the presence of words, that is they do not capture the meaning of words. Word 
embeddings address these limitations. More specifically, word embeddings are high-dimensional 
vectors representing words. Word embeddings are trained by examining the contexts in which a word 
occurs. In particular, a neural network is used to predict the word using a specific window size 
commonly using two architectures:  Continuous Bag of Words and Continuous Skip-gram (Mikolov, 
Chen, Corrado & Dean, 2013). Each word is represented as a dense vector of n-dimensions. The values 
of each vector are the weights of the hidden layers of the neural network. What is important in the 
case of word embeddings is that they capture the semantic meaning of words in a number of different 
dimensions.  

Rationale behind feature selection  

As it was pointed out above, we have been unable to find any studies that utilize text features for 
predicting student performance in e-learning settings, particularly when learning from video lectures. 
Considering the bulk of texts that students generate in online courses (e.g., forum posts, instant 
messages, written assignments etc.), it is interesting to note that the potential of using such texts as 
features has not been exploited. More specifically, while previous studies have actually examined text-
based features, their main limitation is that they have commonly employed frequency-based 
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approaches (BoW, TF-IDF). As it was mentioned above, this means that these approaches do not 
capture the semantic meaning of the words. For example, it has been established that participation in 
online forum discussions is correlated with course performance. Specifically, Romero et al. (2013) 
found that the number of messages and the number of words per message were amongst the 
strongest predictors of whether students would pass or fail a course. While this is undoubtedly an 
interesting finding, features such as the sheer number of forum posts do not necessarily reflect 
student understanding because the semantic content of the posts is ignored. The same applies to 
features such as the number of words per post: this figure does not reflect students’ understanding 
whatsoever. Features such as the number of posts or the number of words per post entail that the 
semantic information that the words carry is ignored.  

Compared to former studies, the approach introduced in this work differs in three main respects: (a) 
performance prediction, (b) similarity measures, and (c) reference frame.  

First, previous studies have employed features extracted from student-generated texts for various 
classification tasks: predict whether students would pass or fail the course (Robinson et al., 2016), 
identify forum posts as related or unrelated to the discussion topic (Wise et al., 2017); determine if a 
forum post requires urgent instructor attention or not (Almatrafi et al., 2018); and classify educational 
videos in terms of topic (Dessì et al., 2019). Our contribution lies in that we have extracted text 
features and attempted to predict the comprehension of video lectures, which is something that has 
not been systematically explored before.  

Second, with one exception (Dessì et al., 2019), previous research has largely utilized frequency-based 
text vectorization techniques (e.g., BoW approaches with TF-IDF with unigrams and bi-grams). While 
promising, these techniques have certain shortcomings – some of which have been already mentioned 
(e.g., sparse matrices; misleading cosine similarity if there are no shared words; only the presence of 
words is captured, not their meanings). Word embeddings have the potential to capture the semantic 
content and have been generally utilized as an input to machine learning classifiers, which empowers 
machine learning methods to scrutinize unstructured text (Wang et al., 2018). Our innovation lies in 
that we have used word embeddings as features rather than simply one-hot encoding or frequency-
based vectorization techniques. Thus, in addition to standard features that are commonly used in the 
NLP literature, we have utilized word embeddings.  

Third, we have also introduced an additional innovation: the use of video lectures as a point of 
reference. More specifically, we have used the video lecture transcripts as a reference against which 
student summaries were compared. We considered the video lectures to represent the ground truth 
and these were the yardstick against which the student summaries of the video lectures were 
evaluated. Both the video transcript and each student summary are treated as documents (see 
aforementioned definition). Using cosine similarity (i.e., the dot product of two-word vectors) we have 
attempted to determine how well student summaries captured the essence of each video lecture.  

The main working assumption is that the higher the similarity between the two documents the higher 
the probability that the student has captured the essence of the video. Consequently, it is also highly 
likely that that the student has correctly understood the underlying concepts. Based on Learning 
Sciences research we assume that the study of the summaries students produce is a direct and 
dynamic indicator of their understanding of the concepts covered in a video lecture. One the one 
hand, texts have been extensively used in cognitive psychology for representing student 
understanding (e.g., Kintsch, 1988) On the other hand, according to the generative activity principle 
of Multimedia Learning Theory (Mayer, Fiorella & Stull, 2020), learning from instructional videos is 
facilitated when learners engage in active processing of the content such as summarizations or 
explanations of the materials. It should be noted that while other studies have also focused on video 
transcripts (Atapattu & Falkner, 2018; Dessì et al., 2019), their motivation has been entirely different. 
We treat the semantic similarity between a student summary and the corresponding video lecture 
transcript as indicative of student’s understanding of the lecture contents. Therefore, our contribution 
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involves the similarity check of the short summaries that the students generated against the video 
lecture transcripts using word embeddings.  

Against this background, the present study examined two main research questions: 

RQ1: Which set of text features yields the highest classification accuracy?  

RQ2: Which ML algorithms yield the highest classification accuracy? 

Method 

Research design and Data collection 

The data reported in this paper originated from a large, ongoing research project which adopts a 
design-based research approach (Cobb et al., 2003; Collins et al., 2004) that is tailored to EDM and LA 
(Rienties, Cross & Zdrahal, 2017). 

This study recruited 42 undergraduate students (40 females and 2 males; age: M = 21.25, SD = 2.5) 
from a higher educational institution in Greece. The majority of the participants were first-semester 
students (83.33%), while the rest came from seventh (4.76%) and ninth semesters (11.90%). Based on 
an initial survey, more than 75% percent of the participants reported that were very familiar with 
media software, office, internet, and social media applications. Moreover, all participants reported 
access to a computer at home and a high-speed Internet connection. Participation in the study was 
voluntary and the students were compensated with two-course credit points. Formal approval for the 
study was obtained from the Ethical Committee of the University. 

LMS 

Moodle was the LMS that was adapted and customized for the purposes of this study. All student 
activity (e.g., viewing the video lectures, responding to quizzes and questionnaires) was thoroughly 
recorded.  

Video lectures 

Six video lectures were developed in vitro which covered topics related to digital media, using an 
introductory textbook as a source (Manovich, 2013). Table 1 presents the titles, the topics, and the 
duration of each video lecture.  

Table 1. Topics of the video lectures 

Video 
Lecture 

(id) 
Title 

Duration 

(min: sec) 
Topics 

1 Digital media 9:20 Introduction to digital media 

2 Simulation 10:27 Phase 1: Simulating analog media in digital systems 

3 Hybridization 10:29 Phase 2: Creation of media hybrids 

4 Deep remixability 12:06 Phase 3: Deep remixability 

5 
Digital compositing 

(part 1) 
8:57 

The role of transparency in compositing 

Types of layers in images 

Examples of 2D and 3D compositing effects 

6 
Digital compositing 

(part 2) 
8:19 

The structure of digital image 

2D digital compositing example 

3D digital compositing example 
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Measures 

Summaries: After viewing each video lecture, the participants were asked to write a short summary 
of the main concepts covered. Their responses were typed in and submitted through the LMS.  

Knowledge tests: We developed three types of knowledge tests for this study: a pre-test, six 
comprehension tests, and a post-test. The pre-test comprised 14 closed type items. This test assessed 
students’ prior knowledge on multimedia topics (Examples: “A digital image is made up from pixels 
(True – False), “The term digital composition refers to the combination of at least two images to create 
a new single image” (True-False). Second, six comprehension tests were developed to measure 
students’ conceptual knowledge for each video lecture (Examples: “Social media is an example of 
hybrid media”: True – False”). Each knowledge test comprised ten closed type items. Third, the post-
test comprised 16 closed type items (True-False, Multiple Choice). Examples of post-test items: 
“Transparency is now so prevalent that it is integrated into virtually any type of software involving 
visual media (e.g., word processor, browser, etc.)” (True-False), “Instagram is a case of hybrid media” 
(True-False). In all aforementioned measures 1 point was given for correct responses and 0 points for 
incorrect ones. Consequently, the maximum obtainable scores for the pre-test, each comprehension 
test, and post-test were 14, 10, and 16 respectively.  

Procedure 

Due to pandemic lockdowns, the study was eventually conducted online, and a considerable number 
of students who had initially expressed interest did not eventually participate. The total study duration 
was 3 hrs. Prior to the treatment the first author had extensively briefed the participants about the 
study objective, conditions, and procedures. The subjects were asked to follow a specific learning path 
on the LMS that consisted of three parts. First, the students filled a demographics survey and 
completed the pre-test. Second, they watched a series of six video lectures. Following each viewing 
they were asked to write a short summary of the topics covered in the respective lecture. It should be 
noted that the students were explicitly requested to refrain from using any resources such as memory 
aids or note-keeping during the video lectures. Their responses were to rely exclusively on the 
information they had committed to memory while watching the video lectures. Next, they answered 
a quiz targeting memory recall and comprehension. This process (viewing, summary, and quiz) was 
repeated for the remaining video lectures. The treatment was concluded with the administration of 
the post-test. 

Analysis 

The study adopted the Python ML ecosystem and specifically the Pandas, Scikit-Learn (Pedregosa, 
Varoquaux, Gramfort, Michel & Thirion, 2011) and spaCy libraries (Explosion, 2022). Fig.1 summarizes 
the overall data workflow adopted for the study.  

The procedure of speech to text conversion was performed with Vosk (Alpha Cephei, 2022), a FOSS 
speech recognition toolkit for converting the audio from the video lecture to transcripts. This module 
takes a video lecture as an input and returns the associated transcript as an output. While this was an 
automated process, in its current version the library does not fully support the Greek language, which 
resulted in some errors. Consequently, the transcripts were inspected, and minor manual corrections 
were made. The data cleaning phase involved removing both redundant data and data that was not 
relevant for the analysis. After the requisite processing and clean-up, all the data that was extracted 
from the LMS was stored in a spreadsheet. We used the ML ecosystem that is built around the Python 
programming language and specifically the Pandas library for storing and preparing the data while the 
Scikit-Learn library was used for ML. The transcript of each video lecture that was extracted in the 
aforementioned step was also stored as text variable. 
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Figure 1. Outline of the workflow of the study 

Student Performance on video lectures as a binary variable 

First, the student performance on each video lecture was used to compute new aggregate variables. 
The median was then used to split each resulting variable into a binary one having two classes: low 
and high performance. The conversion of continuous numerical variables to binary ones for 
classification tasks is common in ML. For instance, Tomasevic et al. (2020) converted a 0-100 
performance score into a binary one using the value of 40 as a cut-off point. Because of the distribution 
of the values in some performance variables, the median split did not always result in two classes with 
an approximately similar number of cases. As we wanted the two classes to be fairly balanced due to 
the small number of participants, we filtered the resulting classes manually, changing the threshold 
as needed to ensure that low and high-performance classes contained roughly equivalent student 
numbers. 

Features  

The study used five sets of features to train a series of ML algorithms for predicting performance. 
Principal Component Analysis (PCA) was also applied to the construction of two feature sets. PCA is a 
commonly used dimension reduction technique that transforms a set of correlated variables into a 
smaller set of uncorrelated ones. As a result, smaller data sets are easier to explore and make 
analysing data much easier and faster for ML algorithms without extraneous variables to process. 
Considering its simplicity, we used the raw text as a baseline model and proceeded by exploring the 
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contributions made by adding various combinations of the other feature sets.  The feature sets that 
were used in the study are described in the remainder of this section.  

Raw text features: We considered the raw text (i.e., vectorized student summaries with weights) as a 
base feature set against which all other feature sets are compared. The raw text represents the 
simplest and most direct feature set that can be considered as a performance predictor because words 
are converted to vectors without any pre-processing whatsoever. In the case of raw text, each word 
used in the summary of a video lecture by a student is considered to be a feature of its own. Raw 
features have been extensively used by previous studies (Almatrafi et al., 2018; Wise et al., 2017).  

More specifically, the first feature set consists of the raw text data that correspond to the student 
summaries. These raw student summaries were used directly as inputs for classification without any 
prior preprocessing (e.g., stopword removal or lemmatization). Vector representations of the 
summaries were created using the standard BoW approach, namely using token counts with 
normalized weights (TF-IDF with unigrams and bigrams). First, each summary was tokenized and a 
vocabulary was constructed from the words that occurred in the summary. Every word in the 
vocabulary was assigned a unique integer number. The frequency for each word in the vocabulary was 
calculated using the Term Frequency – Inverse Document Frequency method which reflects how much 
information is provided by words in the summary. The Term Frequency process is a measure of how 
frequently a given word appears in a summary and the Inverse Document Frequency will downscale 
words that appear frequently across all summaries. At the end of this process each summary was 
encoded as a sparse array with the normalized scores of the words to values between 0 and 1 with its 
length equal to the length of the vocabulary The Scikit – Learn library provides the TfidfVectorizer class 
that was used for parsing the student summaries and calculating the TF-IDF values.  

Engineered text features: The second feature set consists of the engineered features that were 
extracted from students’ summaries. In particular, we processed the raw text to derive a set of 
engineered features which provides a more comprehensive and nuanced picture of the data. The 
engineered features represent specific transformations or extractions of the raw text. Former studies 
have also examined engineered features such as word counts and sentence counts (Almatrafi et al., 
2018; Dessì et al., 2019). Still, we introduced new features whose contributions have not been 
explored before: (a) grammatical information such as noun chunks (part of speech – POS) and (b) 
sematic information (distributed representations of words).  

Regarding the former, the noun chunks do not carry any semantic information, that is they are 
grammar-related features. To the best of our knowledge, noun chunks have not been used as features 
in former studies for performance prediction. Regarding the latter, we have used cosine similarity for 
determining the association of each student summary with the corresponding video lecture. For each 
word in the student summaries of the video lectures an aggregate similarity measure was computed, 
which was then used as a feature for performance prediction. Unlike noun chunks, the similarity 
measure using word embeddings does capture the semantic meaning of words. The underlying 
concept is that words that have similar meanings tend to appear in similar contexts.  

More specifically, to extract the features from the text, we created two groups of variables. As shown 
in Fig. 2, the first group was based on the frequencies of general linguistic features. In particular, the 
following variables were created: a) words, b) sentences, c) nouns, d) verbs and e) adjectives. It should 
be noted that while the first two variables represent general linguistic information, the last three ones 
convey Parts of Speech (POS) information. 

The second group of variables is based on the semantic similarity between texts. For the purposes of 
this study, we have used pretrained word embeddings for the Greek language that are available 
through the spaCy library (Explosion, 2022).  We have used spaCy's large language model for the Greek 
language (500K vectors) that was trained on a large corpus of words. In this model the meaning of 
each word is captured in 300 dimensions, i.e., each word is represented as a sequence of weights in a 
300-dimensional vector. The spaCy  library provides  functions for finding the semantic similarity between 
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Figure 2. Data workflow for the first group of variables for feature engineering using the spaCy library 

word vectors or any other spaCy objects. Word vectors can be compared to determine how closely 
related two words are in their meaning and usage. We used the cosine similarity which is a metric to 
determine the similarity between two words. Statistically, the cosine similarity metric measures the 
cosine of the angle between two n-dimensional vectors projected in a multi-dimensional space. The 
cosine similarity of two documents ranges from 0 to 1. The closer this value is to 1 the more similar 
two vectors are, i.e., have the same orientation. Conversely, the closer the value is to 0 the lower the 
similarity between the vectors. While primarily applicable to words, this similarity metric can also be 
used with larger units such as sentences. In the case of larger text chunks such as sentences, the 
semantic similarity is computed by averaging the token vectors in two spaCy objects respectively. 
While it is considered to be a satisfactory general-purpose measure, the averaging of token vectors is 
limited because it fails to capture the ordering of tokens (Explosion, 2022). In the present study, we 
compared two spaCy objects, the student summary of every video lecture and the video transcript of 
the respective lecture (see Fig. 3). 

We created new variables in which different versions of the summary and the video lecture transcript 
were compared: (a) the raw text without any processing, (b) the preprocessed text, (c) the noun 
chunks from text, and (d) the preprocessed noun chunks from text (see Fig.4). 

The preliminary evaluation of the results indicated three comparisons that yielded relatively high 
similarity values: a) pre-processed summary to pre-processed video transcript (ranging from 0.3 to 
0.9), b) summary noun chunks to video transcript noun chunks (ranging from 0.3 to 0.9) and c) pre-
processed summary to pre-processed video transcript noun chunks (ranging from 0.3 to 0.7). Figure 4 
illustrates this process for each comparison. Consequently, these engineered features of the student 
summaries were first mined for each video lecture and then added to the Pandas data frame.  
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Figure 3.  Comparison of summary and video transcript in different versions of the text 

Combination of raw text features with engineered features: Considering that our preliminary analysis 
of the data indicated that the raw text features and engineered text features carry unique signals 
(Karasavvidis, Papadimas, & Ragazou, 2021), we have chosen to combine these different signals to 
determine their joint effect on performance prediction. Consequently, the third feature set consists 
of the combination of the raw data feature set with the engineered features set. The reasoning behind 
this category was to consider any possible signal overlap between the raw text features and the 
engineered features.  

PCA-transformed combination of raw text features with engineered features: Considering the large 
number of features involved in NLP (e.g., each word in a 50-word summary is treated as a feature on 
its own), we followed standard feature reduction techniques, using a reduced feature set as 
predictors. Thus, the fourth feature set involved a dimensionality reduction of the whole combined 
feature set in step 3 above, i.e., of raw data features and engineered features. We aimed to explore 
whether a reduced set of features improves the performance prediction metrics.  

Combination of raw text features with PCA – transformed engineered features:  Lastly, the fifth 
feature set consists of the combination of raw data features and the feature reduced set of engineered 
features. The reasoning behind this choice was to examine if the initial set of engineered features 
could be replaced by a smaller one.  
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Figure 4. Data workflow of the comparisons for the second group of variables for feature engineering using 
the spaCy library. a) preprocessed summary to preprocessed video transcript, b) noun chunks from summary 

to noun chunks from video transcript, c) preprocessed summary to preprocessed noun chunks 

Classification  

Classification is a commonly used method to predict a data class for a given example of input data 
(Farid, Zhang, Rahman, Hossain & Strachan, 2014). Former studies have explored both binary (e.g., 
Dessì et al., 2019; Hasan et al., 2020) and multi-class classification (e.g., Yoon et al., 2021). In this case 
we used the aforementioned five feature sets to predict student performance into low (below median) 
and high (above median) classes. As this was an exploratory study, we have used the five feature sets 
to train a series of common ML classifiers: Logistic Regression, k-Nearest Neighbours (KNN), Random 
Forest, Support Vector Classifier (SVC), Naive Bayes (NV), AdaBoost, Gradient Boost, and Linear 
Support Vector Classifier (SVC). Following the standard convention, we used 90% of the data for 
training and validation and 10% of the data as a holdout test set.  

Moreover, we used GridSearchCV to exhaustively search a large number of hyperparameters. This 
allowed the automatic fine-tuning of different algorithm hyperparameters to explore the potential of 
various feature set by algorithm combinations. Consequently, the accuracy metrics reported in this 
study need to be interpreted as the best obtainable ones. The performance of the classification 
algorithms was evaluated using the standard metrics: accuracy, precision, recall and F1-score. 
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Results 

The comprehensive algorithm performance for accuracy is given in the Appendix (A). Table 2 shows 
the highest prediction obtained per video lecture regardless of algorithm. It is evident that all the 
feature sets achieve perfect prediction accuracy (1.0). Considering the frequency of occurrence of the 
highest accuracy prediction value (which is 1.0 in this case), we notice that certain feature sets yield 
perfect prediction in more than one video lectures. More specifically, (a) the raw data (R) features, (b) 
the combination of raw data features with engineered features (R+E) and (c) the feature-reduced 
combined feature set of raw data features with engineered features (FR(R+E)) resulted in the highest 
possible accuracy in most video lectures. The engineered features (E) yielded the highest prediction 
in two video lectures while the combination of raw data features with the feature reduced set of 
engineered features (R+FR(E)) only in one video lecture. It should be noted that the evaluation of the 
highest prediction accuracy in this table is only a first rough indicator of the information signal the 
feature sets carry and provides information about the best possible prediction. 

Following others (Robinson et al., 2016; Tomasevic et al., 2020), we averaged the performance of the 
eight classifiers per video lecture. The average performance of all classifiers per feature set is 
presented in Table 3. As can be seen from the table, the raw data feature set (R) and the feature-
reduced combined feature set (FR(R+E)) give the best average accuracy in three and two video lectures 
respectively. Interestingly, the engineered features (E) alone did not achieve a high average prediction 
in any video lecture.  

On the other hand, it can be noted that in two video lectures, 2 and 6 respectively, the average 
prediction value is slightly above chance level. In the other four video lectures the average prediction 
ranges from 73% to 85%. The fourth video lecture with the use of raw data features yielded the highest 
average prediction accuracy (85%). 

 

Table 2. Highest accuracy obtained per video (R – Raw, E – Engineered, FR() - feature reduction) 

Video Lectures R E R+E FR(R+E) R+FR(E) 

v1 0.80 1.00 1.00 1.00 0.80 

v2 1.00 0.57 1.00 0.40 0.80 

v3 1.00 0.71 1.00 1.00 0.80 

v4 1.00 0.80 1.00 0.80 1.00 

v5 0.80 1.00 0.80 1.00 0.80 

v6 0.80 0.80 0.60 0.80 0.80 

 

Table 3. Average accuracy per video lecture (R – Raw, E – Engineered, FR - feature reduction) 

Video Lectures R E R+E FR(R+E) R+FR(E) 

v1 0.58 0.70 0.75 0.77 0.71 

v2 0.631 0.32 0.48 0.26 0.40 

v3 0.70 0.59 0.70 0.66 0.66 

v4 0.85 0.56 0.60 0.66 0.71 

v5 0.80 0.72 0.73 0.83 0.77 

v6 0.43 0.55 0.53 0.60 0.63 
1 The highest values across all feature sets are given in bold 
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Table 4. Frequency distribution of the algorithms with the highest classification accuracy per video lecture 

Algorithm V1 V2 V3 V4 V5 V6 Sum % 

Gradient Boost 2 0 3 0 4 2 11 17.46 

Random Forest Classifier 0 0 1 1 5 3 10 15.87 

AdaBoost 2 1 1 2 3 1 10 15.87 

KNN classifier 4 1 0 2 1 1 9 14.29 

Linear SVC 0 1 0 1 3 3 8 12.70 

Logistic Regression 0 0 1 1 3 1 6 9.52 

Support Vector Classifier 1 3 0 0 2 0 6 9.52 

Naive Bayes 0 0 0 3 2 0 5 7.94 

Table 5. Average classification accuracy per algorithm over all video lectures per feature set 

Algorithm R2 E2 R+E FR(R+E)2 R+FR(E) 

Gradient Boost 0.701 0.48 0.67 0.60 0.70 

Random Forest Classifier 0.77 0.53 0.63 0.63 0.67 

AdaBoost  0.77 0.59 0.67 0.60 0.73 

KNN classifier 0.60 0.63 0.60 0.63 0.57 

Linear SVC  0.56 0.67 0.63 0.67 0.60 

Logistic Regression 0.57 0.63 0.63 0.67 0.60 

Support Vector Classifier 0.63 0.60 0.63 0.60 0.67 

Naive Bayes 0.67 0.43 0.57 - - 
1 The highest values across all feature sets are given in bold 
2 R – Raw, E – Engineered, FR() - Feature Reduction 

 
Table 4 presents a frequency distribution of the algorithms examined with respect to classification 
accuracy. As Table 4 illustrates, two of the three algorithms with the highest frequency of occurrence 
of higher average accuracy are boosting algorithms. Additionally, the Random Forest, the KNN, and 
the Linear SVC were also associated with relatively high frequencies of high average accuracy.  

Table 5 presents the results of the average classification accuracy value across all video lectures for 
each feature set. As Table 5 shows, the raw data feature set obtained the highest average classification 
accuracy (77%). Moreover, the raw data feature set and the dimensionality-reduced combined feature 
set have the largest number of cases in which the classifiers yielded the highest average classification 
accuracy. 

Discussion  

The widespread use of E-learning systems in higher education has led to the capturing of the digital 
traces that students leave behind. These traces have been thoroughly studied in the course of the last 
decade, owning to the efforts of researchers in the fields of EDM and LA. Many LA studies have 
systematically examined the potential value of such data. A large number of studies have explored the 
predictive power of features such as student engagement and interaction with LMS including course 
logins (Agudo-Peregrina et al., 2014), clickstreams (Giannakos et al., 2015; Stöhr et al., 2019), and re-
source viewing (Agudo-Peregrina et al., 2014; Schumacher & Ifenthaler, 2018; Tomasevic et al., 2020). 
Former studies have indicated that such features could be used for many purposes such as predict 
final course performance, increase student retention, or identify at risk students (Huang et al., 2020; 
Kim et al., 2018; Tomasevic et al., 2020).  
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Even though students produce large volumes of text in E-learning systems, previous studies have not 
methodically explored text as a feature. The exception to this rule involves studies that have focused 
on forum discussions for predicting student performance (Conijn et al., 2017; Kim et al., 2016; Romero 
et al., 2013; Wang et al., 2015). However, most studies tend to extract contextual and behavioural 
features of forum posts, for example the number of posts or the number of words per post. The main 
drawback of such features is that they constitute general linguistic features that fail to take into 
consideration the semantic meaning of words.  

The research described in this paper aimed to mitigate this problem by examining the potential of 
features that are extracted from student-produced texts for predicting student performance. In 
particular, we used NLP techniques and extracted five feature sets from short summaries that a cohort 
of undergraduates drafted after viewing a series of short video lectures. The two specific research 
questions that the study addressed are discussed below.  

Text features that carry the most information signal for performance prediction  

Regarding RQ1, the raw text feature set achieved higher average classification accuracy in two video 
lectures (3, 4), while in two other video lectures (1, 5) the combination with feature reduction resulted 
in higher classification accuracy. Additionally, the engineered text feature set achieved higher average 
accuracy classification in two video lectures (1, 5). The picture that emerges seems balanced as each 
set of text features carries an important signal for predicting student performance. A notable 
exception to this pattern concerns two video lectures (2, 6).  

Firstly, it should be pointed out that the classification accuracy obtained is higher compared to what 
other studies, which employ linguistic features, report for binary classification tasks (e.g., Robinson et 
al., 2016). On the other hand, it is comparable with the accuracy metrics reported by other re-
searchers (e.g., Almatrafi et al., 2018; Wise et al., 2016; Wu et al., 2020). However, it should be borne 
in mind that none of these studies was exclusively focused on predicting performance when learning 
from video lectures.  

Secondly, the results indicate that the combination of raw and engineered text features is more 
efficient for predicting student performance compared to either feature set on its own. To some 
extent, this finding is to be expected considering that other studies also report that the combination 
of features results in higher classification accuracy. For example, Robinson et al. (2016) concluded that 
combining NLP feature with demographic ones resulted in higher classification accuracy. Similarly, 
Dessì et al. (2019) also found that the best classification results were obtained by combining frequency 
vectors (BoW) and semantic vectors (IBM Watson).  

Thirdly, we meant to use the BoW approach as a baseline against which other feature combinations 
could be compared. Surprisingly enough, the raw text feature set turned out to yield the highest 
average accuracy in half of the video lectures. Other studies that have used linguistic features for 
training ML algorithms have also reached similar conclusions. For example, Dessì et al. (2019) intended 
to use TF-IDF as a baseline but reported that ultimately it performed quite well compared to the other 
feature sets, they had employed. Additionally, TF was also reported to perform well in the study by 
Almatrafi et al. (2018). Clearly, the signal that the raw text carry needs to be further systematically 
explored and replicated.  

Finally, our findings indicate that classification accuracy was different across the six video lectures as 
a combination of feature sets and classifiers. Also, the eight classifiers obtained high accuracy 
prediction with the different text feature sets. This finding aligns with other studies that report that 
classification accuracy is dependent on the input features and classifiers used (Tomasevic et al., 2020). 
A possible reason for the variability of text features may lie in the topics of video lectures. Even though 
the video lecture series had a common theme, each lecture covered unique topics such as deep remix-
ability or digital compositing (Manovich, 2013).  
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The performance of ML algorithms for classification 

Following others, we evaluated various ML classifiers for predicting student performance based on 
five feature sets. The findings indicated that the Gradient Boost, AdaBoost and Random Forest 
classifiers achieved high average performance in three video lectures when trained on the raw text 
feature set. As discussed above, the potential of this feature set appears to be high and certainly worth 
further exploration. Regarding AdaBoost, we were only able to locate a single study that had used this 
algorithm with linguistic features (Almatrafi et al., 2018). The authors found that AdaBoost was the 
best classifier when using a combination of features that also included TF. While the specific accuracy 
value reported (0.87) by Almatrafi et al. (2018) is higher compared to the one obtained in the present 
study (0.77), our results are generally aligned with theirs considering that one of the two Boost 
classifiers tested in this study were amongst the top performing one’s accuracy-wise.  

With respect to the Random Forest algorithm, our results indicate an average classification accuracy 
of 0.77, which was one of the highest obtained by any of the classifiers used. It should be noted that 
this accuracy value is much higher than the one reported by Dessì et al. (2019), though it should be 
acknowledged that their study involved a multi-class classification task. Almatrafi et al. (2018) also 
reported that the Random Forest classifier was second in terms of accuracy in their binary 
classification task (i.e., predicting when a forum poster requires an urgent response or not).  

Moreover, KNN and Linear SVC performed moderately well with two feature sets, the engineered 
feature set and the combined feature set with reduced dimensionality. Considering the lack of studies 
employing these classifiers, it is difficult to contextualize our findings.  

As far as Logistic Regression is concerned, our findings suggest that the combination of Logistic 
Regression with the combined feature set whose dimensionality had been reduced achieved an 
average accuracy of .67 which is higher than what Robinson et al. (2016) reported in their study. 
However, the performance of Logistic Regression with this particular feature set was lower compared 
to what is reported by other studies that employ linguistic features. For instance, using Logistic 
Regression both Wise et al. (2016) and Almatrafi et al. (2018) obtained an accuracy of 0.80 for binary 
classification tasks.  

The average classification performance of SVM and NB was also moderate (0.67) using two feature 
sets as inputs, raw feature set (NB) and combined feature set (SVM) on which feature reduction has 
been applied to the engineered features only. The performance of these classifiers is comparable to 
the findings of other studies that use linguistic features as input for ML algorithms (e.g., Almatrafi et 
al., 2018).  

Study implications and future work  

Overall, the findings from this exploratory study suggest that the extraction of features from student-
generated texts is very promising. In the long run the proposed approach is expected to have two 
major real-world applications. First, the aspiration is that it will enable real-time inferences of student 
understanding based on written summaries and responses to open-ended questions in general. 
Second, it will pave the way for more personalized feedback, one that is not generic or pre-packaged 
but based on dynamic evaluations of student understanding and performance.  

The approach introduced in this work is not directly applicable to face-to-face settings. Capturing 
student written responses and analysing them in real time to determine how well they correspond to 
an ongoing teacher lecture is challenging in some respects. While it is technically feasible to apply 
some of the components of the proposed method to live lectures (e.g., use cell phones to scan hand-
written responses to open questions or use voice recognition applications to convert the lecture audio 
to text), vectorizing texts and running certain computationally heavy machine learning models in real 
time is impractical. However, the proposed approach is perfectly applicable to hybrid or fully online 



38                                                                                                                             I. Karasavvidis, C. Papadimas, V. Ragazou  

 

learning settings. In such cases, three main applications can be identified: system-based, instructor-
based, and learner-based.  

With respect to system-based applications, the study findings could inform learning analytics and the 
design of various forms of feedback and remedial instruction. More specifically, students could first 
watch a video lecture and then summarize the main points or respond to a series of questions. Then, 
the system could either directly use these student-generated texts as features or distil features from 
these to determine their similarity to the lecture transcripts. Next, a combination of such raw and 
engineered features could be used by the system to gauge student understanding and predict 
performance. Based on the outcomes of such predictions, the system could further provide targeted 
feedback and support (e.g., worked-out examples, summaries of certain concepts, prompts to revisit 
specific portions of the video lectures in which concepts are introduced or applied, direct students to 
specific materials to review, recommend certain practice tasks etc.). The idea is to assign students to 
extra course work that could help achieve mastery.  

Regarding instructor-based applications, the outcomes of this study are directly interpretable and 
actionable, as they clearly illustrate the extent to which students have understood the material. As 
opposed to standard quantitative measures (e.g., quizzes) that are necessarily static, the feature sets 
introduced in this study offer educators a broader range of measures that are more dynamic and 
nuanced in nature. Based on such dynamic measures, the instructors can either design remedial 
interventions using appropriate feedback strategies or take any measures that are deemed 
appropriate for improving student understanding. For instance, educators could devise additional 
tasks so that the students could practice mastering the requisite concepts.  

Finally, the study findings can be of potential interest to the learners themselves. More specifically, 
the results could provide students with information on concepts or topics that are not well understood 
or only partially understood. Based on this information, the students could then engage in 
autonomous, self-regulated study and review, such as revisiting specific portions of the video lectures, 
reviewing certain materials, or practicing further on an additional set of tasks,   

What is important to note is that, ultimately, both the measurement of students' conceptual 
understanding and the subsequent feedback that could be provided can be both qualitative and 
dynamic in nature. Regarding the former, the evaluation of understanding will not be based on 
performance metrics alone (e.g., 60% score on a quiz), namely it will be evaluated using student-
generated texts. For instance, Mangaroska and Giannakos (2018) stressed the need to use 
complimentary metrics to the standard quantitative features. Considering that this requirement is met 
through the utilization of student-authored texts, in the long run this approach might offer a more 
qualitative outlook of student understanding. Tapping on the potential of student generated 
responses (such as summaries or responses to open ended questions) opens up a new way of 
determining student comprehension levels.  

Regarding the latter, the evaluation of understanding will be more dynamic, flexible, and tailored to 
individual students and their needs. Take for example the study by (Matcha, Uzir, Gasevic, & Pardo, 
2020) in which the instructors had prepared in advance a set of comments for students exhibiting 
different engagement levels with the video lectures, namely students who only glanced through the 
video lecture, students who watched a small portion, students who viewed the whole video, and 
students who viewed the video multiple times. The underlying assumption behind their approach is 
that different student engagement levels require different levels of feedback. A potential limitation of 
such approaches of pre-packaged feedback is that it might correspond to e.g., student engagement 
levels but not necessarily to students' conceptual understanding. For example, students might skip 
portions of a video lecture because they are familiar with the concepts or because they expect the 
concepts to make more sense in the next sections. The approach introduced in this work could easily 
mitigate such limitations through the provision of automated feedback that is personalized. For 
instance, given a quiz question that students fail to answer correctly, NLP could be used to extract an 
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answer from the complete text corpus used in the course (i.e., video lecture transcripts, lecture slides, 
course notes, and course readings). On the other hand, if the approach introduced in this work turns 
out to be consistently effective in predicting student performance of student-authored texts, then the 
provision of feedback that is automated and real-time might be a possibility. To put this in perspective, 
let us consider former studies that have employed both non-linguistic features (Romero et al., 2013; 
Rossi & Gnawali, 2014; Wen et al., 2014) and linguistic ones (Almatrafi et al., 2018; Dessì et al., 2019; 
Robinson et al., 2016; Wise et al., 2016). In terms of feedback, the main limitation of such studies is 
that sufficient data needs to be collected over a span of several weeks or even months before the 
instructors can be informed about whether a particular student is facing difficulties, is struggling with 
the course content or is likely to drop out. As opposed to such extended time frames, a refined version 
of the approach outlined in this work could provide almost real-time information of students' 
understanding of video lectures and facilitate the provision of usable feedback, which is genuinely 
based on students’ conceptual understanding rather than pre-packaged.  

Limitations  

Despite the novel approach concerning text-based feature sets adopted by the present study and the 
promise of student-produced texts for predicting learning from video lectures, the findings should be 
interpreted with caution. The first main limitation concerns the number of participants. Although 
several other ML studies have used comparable numbers of participants (Abu Zohair, 2019; Wu et al., 
2020; Yoon, Lee & Jo, 2021), we plan to replicate and extend our findings using a larger dataset. A 
second limitation is that the study was not balanced in terms of gender. Because the research was 
conducted in a preschool childhood education department, the female to male ratio of the student 
population is necessarily reflected in the sample participants, resulting in a very high percentage of 
female students. Replication of the findings with a more gender- balanced sample is desirable. A third 
limitation is that we focused exclusively on text-based features, ignoring a variety of LMS behavioural 
indicators (Mangaroska, Sharma, Gašević & Giannakos, 2020) or learner attributes (i.e., mental effort, 
self-efficacy, motivation, flow) that could be used as indicators. For example, Schumacher and 
Ifenthaler (2018) found that students’ motivational dispositions played a crucial role in providing a 
personalized model that could support learning and motivation. Our future plans involve the 
examination of learner attributes in combination with text-based features for predicting student 
performance.  

Fourth, the method proposes in this work requires extensive human intervention for data processing, 
running ML models, and interpreting the results. Currently, there is considerable manual labour and 
intervention involved because the level of automation is low. However, in the long run – if such feature 
sets turn out to be consistently conducive to student performance prediction – they can be 
standardized and streamlined (e.g., develop a series of scripts to automate the process, design and 
develop a corresponding module for integration in LMS systems).  

Last, in its current form the proposed approach presupposes video lecture transcripts. If no video 
lectures are available, then in principle other course materials could be used (e.g., lecture slides, 
course readings, other literature papers). However, we have not yet tested if a wider range of course-
related texts could be as effective for deriving features and determining the similarity with student 
summaries or responses to open-ended questions. While it seems plausible to assume that the feature 
sets extracted from e.g., course readings could be equivalent to video lecture transcripts, this needs 
to be systematically explored.  

Overall, our work needs to be seen as exploratory given that it covers relatively new ground, is far 
from conclusive, and non-standardized. As this is one of the first studies to tackle performance 
prediction using student-generated texts, more work is clearly needed to verify the real contribution 
each set of text features makes performance-wise. Replications in similar contexts and extensions to 
other academic subjects and topics are required to determine the actual added value of this approach. 



40                                                                                                                             I. Karasavvidis, C. Papadimas, V. Ragazou  

 

Conclusion 

To date, we are not aware of studies using student-generated texts as features for either predicting 
student performance or gauging student understanding in online learning settings. This paper 
introduced a novel approach for predicting student performance after viewing short video lectures. 
Our approach consisted in using five text-based feature sets to train eight ML classifiers. The findings 
indicated that the raw text feature set achieved higher average classification accuracy in two video 
lectures, while the combined feature set whose dimensionality had been reduced resulted in higher 
classification accuracy in two other video lectures. In terms of algorithms, the findings indicated that 
the Gradient Boost, AdaBoost and Random Forest classifiers achieved high average performance in 
half of the video lectures. Overall, our findings suggest the potential of using unstructured text data 
produced by students for predicting performance when learning from video lectures. The present 
work paves the way for a new methodical approach to the use of text-based features for predicting 
student performance in e-learning environments.  
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Appendix A. Algorithm performance metrics 

Table A1. Performance metrics for Video 1 per feature set (R – Raw, E – Engineered, FR() - feature reduction) 

Algorithms R E R+E FR(R+E) R+FR(E) 
 

A P R F A P R F A P R F A P R F A P R F 
Logistic 
Regression 0.40 0.00 0.00 0.00 0.80 1.00 0.67 0.80 0.80 1.00 0.67 0.80 0.80 1.00 0.67 0.80 0.60 0.67 0.67 0.67 

KNN classifier 0.40 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 0.75 1.00 0.86 

Random Forest 0.60 1.00 0.34 0.50 0.60 1.00 0.34 0.50 0.80 1.00 0.67 0.80 0.60 1.00 0.33 0.50 0.60 1.00 0.33 0.50 
Support Vector 
Classifier 0.60 0.60 1.00 0.75 0.80 1.00 0.67 0.80 0.80 1.00 0.67 0.80 0.80 1.00 0.67 0.80 0.80 0.75 1.00 0.86 

Naive Bayes 0.60 1.00 0.34 0.50 0.40 0.00 0.00 0.00 0.40 0.50 0.34 0.40         

AdaBoost  0.801 1.00 0.67 0.80 0.57 0.67 0.50 0.57 0.60 1.00 0.33 0.50 0.60 1.00 0.33 0.50 0.80 1.00 0.67 0.80 

Gradient Boost 0.80 1.00 0.67 0.80 0.60 1.00 0.33 0.50 0.80 1.00 0.67 0.80 0.80 0.80 1.00 0.67 0.80 1.00 0.67 0.80 

Linear SVC  0.40 0.00 0.00 0.00 0.80 1.00 0.67 0.80 0.80 1.00 0.67 0.80 0.80 1.00 0.67 0.80 0.60 0.67 0.67 0.67 
1.The highest values across all feature sets are given in bold, A: Accuracy, P: Precision, R: Recall, F: F1 score 

 

 

 

Table A2. Performance metrics for Video 2 per feature set (R – Raw, E – Engineered, FR() - feature reduction) 

Algorithms R E R+E FR(R+E) R+FR(E) 
 A P R F A P R F A P R F A P R F A P R F 
Logistic 
Regression 0.20 0.00 0.00 0.00 0.40 1.00 0.25 0.40 0.20 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.20 0.00 0.00 0.00 

KNN classifier 1.001 1.00 1.00 1.00 0.20 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.20 0.00 0.00 0.00 

Random Forest 0.80 1.00 0.75 0.86 0.20 0.00 0.00 0.00 0.40 1.00 0.25 0.40 0.20 0.00 0.00 0.00 0.20 0.00 0.00 0.00 
Support Vector 
Classifier 0.80 0.80 1.00 0.89 0.40 1.00 0.25 0.40 1.00 1.00 1.00 1.00 0.40 1.00 0.25 0.40 0.80 0.80 1.00 0.89 

Naive Bayes 0.60 1.00 0.50 0.67 0.20 0.00 0.00 0.00 0.20 0.00 0.00 0.00         

AdaBoost 0.80 1.00 0.75 0.86 0.57 1.00 0.40 0.57 0.80 1.00 0.75 0.86 0.20 0.00 0.00 0.00 0.60 1.00 0.50 0.67 

Gradient Boost 0.60 1.00 0.50 0.67 0.20 0.00 0.00 0.00 0.60 1.00 0.50 0.67 0.20 0.00 0.00 0.00 0.40 1.00 0.25 0.40 

Linear SVC 0.20 0.00 0.00 0.00 0.40 1.00 0.25 0.40 0.40 1.00 0.25 0.40 0.40 1.00 0.25 0.40 0.40 1.00 0.25 0.40 
1.The highest values across all feature sets are given in bold, A: Accuracy, P: Precision, R: Recall, F: F1 score 
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Table A3. Performance metrics for Video 3 per feature set (R – Raw, E – Engineered, FR() - feature reduction) 

Algorithms R E R+E FR(R+E) R+FR(E) 

 A P R F A P R F A P R F A P R F A P R F 
Logistic 
Regression 0.60 1.00 0.33 0.50 0.60 1.00 0.33 0.50 0.80 1.00 0.67 0.80 1.00 1.00 1.00 1.00 0.60 1.00 0.33 0.50 

KNN classifier 0.60 1.00 0.33 0.50 0.60 1.00 0.33 0.50 0.60 1.00 0.33 0.50 0.60 1.00 0.33 0.50 0.60 1.00 0.33 0.50 

Random Forest 0.80 1.00 0.67 0.80 0.60 1.00 0.33 0.50 0.60 1.00 0.33 0.50 0.60 1.00 0.33 0.50 0.80 1.00 0.67 0.80 
Support Vector 
Classifier 0.60 1.00 0.33 0.50 0.60 1.00 0.33 0.50 0.60 1.00 0.33 0.50 0.60 1.00 0.33 0.50 0.60 0.60 1.00 0.75 

Naive Bayes 0.60 1.00 0.33 0.50 0.40 0.00 0.00 0.00 0.60 1.00 0.33 0.50         

AdaBoost  0.60 1.00 0.33 0.50 0.71 1.00 0.33 0.50 0.80 1.00 0.67 0.80 0.60 1.00 0.33 0.50 0.60 1.00 0.33 0.50 

Gradient Boost 1.001 1.00 1.00 1.00 0.6 1.00 0.33 0.50 1.00 1.00 1.00 1.00 0.60 1.00 0.33 0.50 0.80 1.00 0.67 0.80 
Linear SVC  0.6 1.00 0.33 0.50 0.60 1.00 0.33 0.50 0.60 1.00 0.33 0.50 0.60 1.00 0.33 0.50 0.60 1.00 0.33 0.50 

1 The highest values across all feature sets are given in bold, A: Accuracy, P: Precision, R: Recall, F: F1 score 

 

 

 

Table A4. Performance metrics for Video 4 per feature set (R – Raw, E – Engineered, FR() - feature reduction) 

Algorithms R E R+E FR(R+E) R+FR(E) 
 A P R F A P R F A P R F A P R F A P R F  
Logistic 
Regression 1.001 1.00 1.00 1.00 0.60 1.00 0.50 0.67 0.60 1.00 0.50 0.67 0.60 1.00 0.50 0.67 0.80 1.00 0.75 0.86  

KNN classifier 0.60 1.00 0.50 0.67 0.80 1.00 0.75 0.86 0.60 1.00 0.50 0.67 0.80 1.00 0.75 0.86 0.60 1.00 0.50 0.67  
Random Forest 0.80 1.00 0.75 0.86 0.20 0.00 0.00 0.00 0.60 1.00 0.50 0.67 0.80 1.00 0.75 0.86 0.80 1.00 0.75 0.86  
Support Vector 
Classifier 0.80 0.80 1.00 0.89 0.60 1.00 0.50 0.67 0.60 1.00 0.50 0.67 0.60 1.00 0.50 0.67 0.60 1.00 0.50 0.67  

Naive Bayes 1.00 1.00 1.00 1.00 0.80 0.80 1.00 0.89 1.00 1.00 1.00 1.00          
AdaBoost  1.00 1.00 1.00 1.00 0.71 0.80 0.80 0.80 0.60 1.00 0.50 0.67 0.60 1.00 0.50 0.67 1.00 1.00 1.00 1.00  
Gradient Boost 0.60 1.00 0.50 0.67 0.20 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.60 1.00 0.50 0.67 0.60 1.00 0.50 0.67  
Linear SVC  1.00 1.00 1.00 1.00 0.60 1.00 0.50 0.67 0.60 1.00 0.50 0.67 0.60 1.00 0.50 0.67 0.60 1.00 0.50 0.67  

1 The highest values across all feature sets are given in bold, A: Accuracy, P: Precision, R: Recall, F: F1 score 
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Table A5. Performance metrics for Video 5 per feature set (R – Raw, E – Engineered, FR() - feature reduction) 

Algorithms R E R+E FR(R+E) R+FR(E) 
 A P R F A P R F A P R F A P R F A P R F  
Logistic 
Regression 0.801 0.75 1.00 0.86 0.80 0.75 1.00 0.86 0.80 0.75 1.00 0.86 0.80 0.75 1.00 0.86 0.80 0.75 1.00 0.86  

KNN classifier 0.80 0.75 1.00 0.86 0.60 0.67 0.67 0.67 0.60 0.67 0.67 0.67 0.60 0.67 0.67 0.67 0.60 0.67 0.67 0.67  
Random Forest 0.80 0.75 1.00 0.86 1.00 1.00 1.00 1.00 0.80 0.75 1.00 0.86 1.00 1.00 1.00 1.00 0.80 0.75 1.00 0.86  
Support Vector 
Classifier 0.80 0.75 1.00 0.86 0.60 0.67 0.67 0.67 0.60 0.67 0.67 0.67 0.60 0.67 0.67 0.67 0.80 0.75 1.00 0.86  

Naive Bayes 0.80 0.75 1.00 0.86 0.60 0.60 1.00 0.75 0.80 0.75 1.00 0.86          
AdaBoost  0.80 0.75 1.00 0.86 0.57 0.50 1.00 0.67 0.60 0.67 0.67 0.67 1.00 1.00 1.00 1.00 0.80 0.75 1.00 0.86  
Gradient Boost 0.80 1.00 0.67 0.80 0.80 0.75 1.00 0.86 0.80 0.75 1.00 0.86 1.00 1.00 1.00 1.00 0.80 0.75 1.00 0.86  
Linear SVC  0.80 0.75 1.00 0.86 0.80 1.00 0.67 0.80 0.80 1.00 0.67 0.80 0.80 1.00 0.67 0.80 0.80 1.00 0.67 0.80  

1 The highest values across all feature sets are given in bold, A: Accuracy, P: Precision, R: Recall, F: F1 score 

 

Table A6. Performance metrics for Video 6 per feature set (R – Raw, E – Engineered, FR() - feature reduction) 

Algorithms R E R+E FR(R+E) R+FR(E) 

 A P R F A P R F A P R F A P R F A P R F 
Logistic 
Regression 0.40 0.25 1.00 0.40 0.60 0.33 1.00 0.50 0.60 0.33 1.00 0.50 0.60 0.33 1.00 0.50 0.60 0.33 1.00 0.50 

KNN classifier 0.20 0.20 1.00 0.33 0.60 0.33 1.00 0.50 0.60 0.33 1.00 0.50 0.60 0.33 1.00 0.50 0.60 0.33 1.00 0.50 

Random Forest 0.801 0.50 1.00 0.67 0.60 0.33 1.00 0.50 0.60 0.33 1.00 0.50 0.60 0.33 1.00 0.50 0.80 0.50 1.00 0.67 
Support Vector 
Classifier 0.20 0.20 1.00 0.33 0.60 0.33 1.00 0.50 0.20 0.20 1.00 0.33 0.60 0.33 1.00 0.50 0.40 0.25 1.00 0.40 

Naive Bayes 0.40 0.25 1.00 0.40 0.20 0.20 1.00 0.33 0.40 0.25 1.00 0.40         

AdaBoost  0.60 0.00 0.00 0.00 0.43 0.20 1.00 0.33 0.60 0.00 0.00 0.00 0.60 0.33 1.00 0.50 0.60 0.00 0.00 0.00 

Gradient Boost 0.40 0.00 0.00 0.00 0.60 0.33 1.00 0.50 0.60 0.33 1.00 0.50 0.40 0.25 1.00 0.40 0.80 0.50 1.00 0.67 

Linear SVC  0.40 0.25 1.00 0.40 0.80 0.50 1.00 0.67 0.60 0.33 1.00 0.50 0.80 0.50 1.00 0.67 0.60 0.33 1.00 0.50 
1 The highest values across all feature sets are given in bold, A: Accuracy, P: Precision, R: Recall, F: F1 score 
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